5.11.24 5-ОПИ-24 физика Фурсаева Галина Анатольевна

В рабочую тетрадь восстановить конспект в полном объёме!!!

Тема: Уравнение состояния идеального газа Газовые законы

Уравнение, связывающее три макроскопических параметра р, V и T, называют уравнением состояния идеального газа произвольной массы или уравнением Менделеева- Клапейрона: PV = $\frac{m}{M}RT$, где

Р давление газа, $\Pi a = \frac{H}{M^2}$ (Паскаль), V – объём, м; m - масса вещества, кг; M – молекулярная масса вещества, кг/моль, T — температура, K (Кельвин), t — температура, ${}^{0}C$ (градус Цельсия);

$$T=273,15+t;\;\;R-$$
универсальная газовая постоянная, $\frac{\mathcal{L}_{\text{ж}}}{_{\text{К·моль}}};\;R=kN_{\text{A}}=1,38*10^{-23}*6,02*10^{23}=8,31\frac{\mathcal{L}_{\text{ж}}}{_{\text{К·моль}}}$

Молекулярная масса находится как сумма относительных атомных масс элементов, входящих в состав молекулы вещества. Молекула -мельчайшая частица электрически нейтральная. Например:

$$M(CO_2) = 12 + 16*2 = 44 \Gamma/MOJIb = 44*10^{-3} K\Gamma/MOJIb$$

$$M(H_2O) = 1*2 + 16 = 18 \ г/моль = 18* 10^{-3} \ кг/моль$$

Определить по шкале Кельвин температуру, равную 35⁰C

$$T = 273,15 + 35 = 308 \text{ K}$$

Определить температуру 500 К по шкале Цельсия.

$$T = 273,15 + t$$
; $t = T - 273,15 = 500 - 273,15 = 227^{\circ}C$

Уравнения состояния идеального газа, который может находиться в двух любых состояниях называется уравнением Клапейрона.

Если индексом 1 обозначить параметры, относящиеся к первому состоянию, а индексом 2 параметры, относящиеся ко второму состоянию, для газа данной массы уравнение будет выглядеть

Tak:
$$\frac{p_1 V_1}{T_1} = \frac{p_2 V_2}{T_2} = \text{const.}$$

 $\frac{p_1V_1}{T_1} = \frac{p_2V_2}{T_2} = \text{const.}$ Нормальные условия газа ($p_0 = 1 \text{ атм} = 1,013 \cdot 10^5 \text{ Па, t} = 0 ^{\circ}\text{С}$ или T = 273K) С помощью уравнения состояния идеального газа можно исследовать процессы, в которых масса газа и один из трёх

параметров — давление, объём или температура — остаются неизменными.

Количественные зависимости между двумя параметрами газа при фиксированном значении третьего называют газовыми законами.

Процессы, протекающие при неизменном значении одного из параметров, называют изопроцессами. Различают:

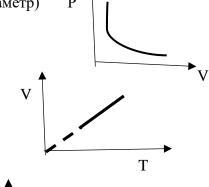
1. Изотермический процесс. T= const (неизменный параметр) $P_1V_1 = P_2V_2$

Закон Бойля-Мариотта

Графически изображается линией – изотерма

Изобарный процесс. P = const

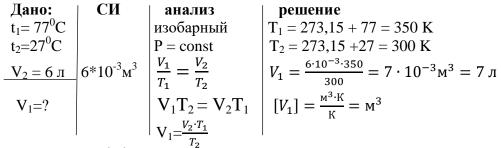
$$\frac{V_1}{T_1} = \frac{\dot{V}_2}{T_2}; \quad V_1 T_2 = V_2 T_1$$


Закон Гей-Люссака

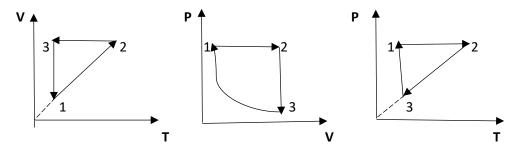
Графически изображается линией – изобара

2. Изохорный процесс. V= const

$$rac{P_1}{T_1} = rac{P_2}{T_2}; \qquad P_1 T_2 = P_2 T_1$$
Закон Шарля


Графически изображается линией - изохора

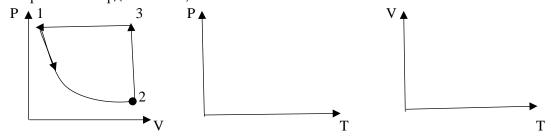
Задача:


№ 512.Какой объём займёт газ при 77^{0} С, если при 27^{0} С его объём 6 л?

Ответ: $V_1 = 7*10^{-3} \text{м}^3 = 7 \text{ л}$

Самостоятельно решить № 522. При температуре 27^{0} С давление газа в закрытом сосуде было 75 кПа. Каким будет давление при температуре (- 13^{0} C)? (1кПа= 10^{3} Па, процесс изохорный, задачу решить по подобию № 512)

Изменения состояние газа при некоторых условиях необходимо изображать графически. Дан график изменения термодинамической системы газа в координатах VT. Изобразить цикл в координатах PV, PT. Для этого нужно исследовать цикл в данных координатах. Затем проводим линии (изохору, изобару, изотерму)в соответствующие координаты, используя исследование.



В данном цикле изменение состояния газа в координатах объёма- V и температуры – T. Индексы ставим в соответствии цифрами перехода. Проводим исследование: больше, меньше, равно, используя знания «проекции векторов»

Исследование:

<u>1- 2</u>	<u>2 - 3</u>	<u>3 - 1</u>
$V_1 < V_2$	$V_2 = V_3$	$V_3 > V_1$
$T_1 < T_2$	$T_2 > T_3$	$T_3 = T_1$

изобарный изохорный изотермический (В координатах PV первую линию проводим изотерму и выясняем, что объём 3 больше чем объём 1. Правильно выставляем цифры на линии. В координатах PT первую линию проводим изохору и выставляем цифры в соответствии исследования 2-3) Самостоятельно провести исследование изменения термодинамической системы газа в координатах PV. Изобразить в координатах PT, VT

