
12.09.-25 5-ОПИ-25 физика Фурсаева Галина Анатольевна

Тема: Закон сохранения импульса тела. Реактивное движение

Ответить на вопросы:

- 1. Вспомните, что такое трение.
- 2. Какими факторами оно обусловлено?
- 3. Почему изменяется скорость движения по столу бруска после толчка?
- 4. От чего не зависит сила трения?

Силы трения- это силы действуют вдоль поверхностей тел при их непосредственном соприкосновении и во всех случаях препятствуют относительному движению соприкасающихся тел.

Если положить брусок и меньшую грань, то $F_{\text{тр. max}}$ не изменится.

Максимальная сила трения покоя не зависит от площади соприкосновения тел.

Какую бы систему взаимодействующих тел мы не рассматривали, будь то Солнечная система или сталкивающие биллиардные шары, координаты и скорости тел непрерывно изменяются с течением времени. В этом ничего нет неожиданного.

Но в системе есть ряд величин, на которые не действуют внешние силы, зависящие от координат и скорости всех тел системы, которые при движении тел не изменяются по времени – это импульс (количество движения). Он подчиняется закону сохранения.

Если на тело действует постоянная сила, то и постоянным будет ускорение. № 136 Мяч массой 0,5 кг после удара, длящегося 0,02 с, приобретает скорость 10 м/с. Найти среднюю силу удара.

Дано: анализ решение
$$m=0,5 \text{ кг}$$
 $f=ma$ $t=0,02 \text{ c}$ $a=\frac{\vartheta-\vartheta_0}{t}$ $f=m\left(\frac{\vartheta-\vartheta_0}{t}\right)$ $f=m\left(\frac{\vartheta-\vartheta_0}{t}$

F=?

 $\vartheta_0 = 0$

Ответ: F= 250 H

На основании этой задачи 2 закон Ньютона имеет другой вид:

 $\overrightarrow{F} = m \left(\overrightarrow{\vartheta} - \overrightarrow{\vartheta_0} \right) \to \overrightarrow{F} \cdot t = m \left(\overrightarrow{\vartheta} - \overrightarrow{\vartheta_0} \right) \to$ появляется новая физическая количественная величина.

Мяч после удара, длящегося 0,02 с приобретает скорость, при этом приобретает мяч и количество движения, которое называется импульс тела.

Импульсом материальной точки называется величина, равная произведению массы точки на её скорость.

$$\vec{p} = \mathbf{m} \cdot \vec{\boldsymbol{\vartheta}} - \mathbf{umпульс}$$
 точки, $\frac{\kappa \Gamma \cdot M}{c}$ - физическая векторная величина, тогда

$$m\overrightarrow{\vartheta}-m\overrightarrow{\vartheta_0}$$
 – есть изменение импульса за время Δt

 $\Delta \vec{p} = \vec{F} \Delta t$ -изменение импульса материальной точки пропорционально приложенной к ней силе и имеет такое же направление.

Изменение импульса точки равно импульсу силы, действующей на её.

<u>Особенность:</u> 1. импульс — векторная величина. имеет такое же направление, как и скорость;

- 2. Силы, с которыми тела системы взаимодействуют между собой, являются внутренними силами.
- 3. Изменение импульса материальной точи равно импульсу действующей на нее силы.
- 4. Импульс тела могут приобретать и передавать другим телам.

Внутренние силы изменяют импульсы отдельных тел системы, но изменить суммарный импульс системы они не могут. В этом заключается закон сохранения импульса

Если внешние силы на систему не действуют или их сумма равна нулю, то импульс системы сохраняется: $\Delta \vec{p}_{\text{сист}} = 0$, или $\vec{p}_{\text{сист}} = \text{const.}$

Полученный результат справедлив для системы, содержащей произвольное число тел:

$$\mathbf{m}_1 \, \overrightarrow{v}_1 + \mathbf{m}_2 \, \overrightarrow{v}_2 + \mathbf{m}_3 \, \overrightarrow{v}_3 + \dots = \mathbf{m}_1 \, \overrightarrow{u}_1 + \mathbf{m}_2 \, \overrightarrow{u}_2 + \mathbf{m}_3 \, \overrightarrow{u}_3 + \dots$$
 (4.9) где $\overrightarrow{v}_1, \, \overrightarrow{v}_2, \, \overrightarrow{v}_3, \dots$ — скорости тел до взаимодействия; $\overrightarrow{u}_1, \, \overrightarrow{u}_2, \, \overrightarrow{u}_3, \dots$ — скорости тел после взаимодействия.

Особенность: Закон сохранения импульса применяется, если система замкнута и в этой системе на тела вообще не действуют внешние силы или если действуют на тела внешние силы, но их сумма равна нулю.

- 1) Если даже на тела системы действуют внешние силы, но их сумма равна нулю, то импульс системы всё равно сохраняется.
- 2) Если сумма внешних сил не равна нулю, но сумма проекций сил на какое- то направление равна нулю, то проекция суммарного импульса системы на это направление не меняется.

3) Если внешние силы много меньше внутренних сил, то можно считать, что импульс системы сохраняется. Например, при разрыве снарядов силы, разрывающие снаряд, много больше внешней силы тяжести.

Реактивное движение. Большое значение закон сохранения импульса имеет для исследования реактивного движения.

Реактивным движением называют движение тела, возникающее при отделении некоторой его части с определённой скоростью относительно него.

Примером реактивного движения является движение ракеты при истечении из неё струи горючего газа, образующегося при сгорании топлива.

Так как вследствие истечения струи ракета движется с ускорением, то можно считать,

К. Э. Циолковский (1857—1935)

что на ракету действует сила, называемая реактивной силой. **Реактивные двигатели**. В настоящее время в связи с освоением космического пространства получили широкое

распространение реактивные двигатели.

В космическом пространстве использовать какие- либо другие двигатели, кроме реактивных, невозможно, так как там нет опоры (твёрдой, жидкой или газообразной), отталкиваясь от которой космический корабль мог бы получать ускорение.

Успехи в освоении космического пространства

Автором первого в мире проекта реактивного летательного аппарата для полета людей принадлежит русскому революционеру-народовольцу Н.И.Кибальчичу (1853-1881гг) Основы теории реактивного двигателя и научное доказательство возможности полётов в межпланетном пространстве были впервые высказаны и разработаны русским учёным К. Э. Циолковским в работе «Исследование мировых пространств реактивными приборами».

Нашей стране принадлежит великая честь запуска

4 октября 1957 г. первого искусственного спутника Земли, а 12 апреля 1961 г. космического корабля с космонавтом Ю. А. Гагариным на борту.

Этот и другие полёты были совершены на ракетах, сконструированных отечественными учёными и инженерами под руководством С. П. Королёва.

Большой вклад в исследование космического пространства внесли также

американские учёные, инженеры и астронавты. Два американских астронавта из экипажа космического корабля «Аполлон-11» — Н. Армстронг и Э. Олдрин — 20 июля 1969 г. впервые совершили посадку на Луну. На космическом теле Солнечной системы человеком были сделаны первые шаги.

С. П. Королёв (1906—1966)

Ю. А. Гагарин (1934—1968)

С выходом человека в космос не только открылись возможности исследования других планет, но и представились поистине фантастические возможности изучения природных явлений и ресурсов Земли, о которых можно было только мечтать. Теперь снимки с орбиты, охватывающие миллионы квадратных километров, позволяют выбирать для исследования наиболее интересные участки земной поверхности, экономя тем самым силы и средства.

Освоение космоса имеет огромное практическое значение.

Нас уже не удивляет, что мы можем заглянуть практически в каждый уголок Земли, поговорить с человеком, находящимся на другом континенте, благодаря космической (спутниковой) связи.

В настоящее время можно в режиме онлайн смотреть, что происходит в космосе благодаря телескопам, вращающимся по орбитам вокруг Земли.

Орбитальные аппараты в настоящее время используются не только для научных исследований космического пространства, но и для биологических, медицинских исследований, получения новых материалов.

Закрепление: Задача № 123, 344

Задача № 123 Два тела массами 400 и 600 г двигались друг другу навстречу и после удара остановились. Какова скорость второго тела, если первое двигалось со скоростью 3 м/с

(В анализе сначала запишите закон сохранения импульса для двух тел, а затем преобразуете применительно к нашему решению. Так как тела остановились, правая часть уравнения преобразуется в ноль. В левой части между слагаемыми будет стоять минус, так как тела двигались навстречу)

Задача № 344 Движение материальной точки описывается уравнением $X=5-8t+4t^2$. Приняв её массу равной 2 кг, найти импульс через 2с и через 4с после начала отсчета времени, а также силу, вызвавшую это изменение импульса.

(Из уравнения найдёте характеристики движения, запишите формулу импульса p=mv, $v=v_0+at$, и найдете скорость при t=2c и t=4c, тогда найдёте импульс точки)