Дистанционное задание для группы 3-ОР-23

Задание: продолжаем расчеты по курсовому проектированию, раздел 1.4.

1.4 Определение среднего коэффициента вскрыши, срока службы карьера, производственной мощности карьера

Средний коэффициент вскрыши:

$$Kcp = \frac{Ve}{Q_{np}}, M^3/m \tag{1.25}$$

При проектировании карьеров большое значение имеет выбор оптимального календарного режима работы, при котором обеспечиваются рациональное использование горнотранспортного оборудования, максимальная производительность труда и минимальные затраты на производство товарной продукции.

Производственная деятельность карьеров характеризуется рядом показателей, среди которых важнейшими являются производственная мощность, производительность по полезному ископаемому, производительность по вскрыше и производительность по горной массе.

При выборе той или иной формы организации работ на карьере следует учитывать, прежде всего, условия, обеспечивающие высокую производительность экскаваторов. Обычно для мощного и дорогостоящего оборудования принимают непрерывный режим работы карьера, что позволяет повысить суточную производительность экскаватора и уменьшить себестоимость выемки 1 m^3 породы за счёт амортизационных отчислений. Число рабочих дней в году принимается по районам.

Нормы технологического проектирования рекомендуют следующий календарный режим работы на карьерах:

- непрерывная рабочая неделя при 8-часовой смене в сутки для карьеров с годовой производительностью по горной массе более 25 млн.т;
- шестидневная рабочая неделя при двух или трёх сменах в сутки для карьеров с годовой производительностью от 1-1,5 до 25 млн.т;
- пятидневная рабочая неделя при двух сменах в сутки для карьеров с годовой производительностью до 1-1,5 млн.т.

Режим вскрышных работ может отличаться от режима добычных работ. На карьерах используют режим работы:

- 2 смены по 12 часов (2x12) или
- 3 смены по 8 часов (3x8).

На угольных разрезах при работе в блоке с электростанциями и при применении мощного горного оборудования по добыче угля чаще применяется непрерывная рабочая неделя - 354 рабочих дней в году с 2-я рабочими сменами при продолжительности смены 12 часов.

При определении производственной мощности карьера по полезному ископаемому производится проверка на ограничение по минимальному сроку службы предприятия, службы карьера определяется по формуле:

$$T = \frac{Q_{np}}{\Pi_{np}} + t_1 + t_2, \text{ nem}$$
 (1.26)

где Qnp- промышленные запасы полезного ископаемого, m;

 t_1 , t_2 - соответственно время на развитие и затухание работ принимается по $1,5 \div 2$ года; Π_{coo} - годовая производственная мощность карьера по добыче, m/

При подсчете срока службы необходимо, чтобы он соответствовал годовой производственной мощности, которую можно принимать из таблицы 1.3 в зависимости от общих запасов полезного ископаемого.

Таблица 1.3- Производственная мощность и срок службы разреза

Производственная мощность, млн.т	Срок эксплуатации угольного карьера,
	лет
Менее 5	15÷20
5 ÷ 10	20÷40
10 ÷ 15	40÷45
15 ÷ 20	45÷50
20 ÷30	50÷60
Более 30	Более 60

Производственную мощность разреза по вскрыше определяем по формуле:
$$\Pi_{\text{B}}\!\!=\!\!\Pi_{\text{год}}\!\!\cdot\! K_{\text{cp}}\!\!\cdot\! K_{\text{H}}, \quad \text{м}^3/\text{год} \tag{1.25}$$

где Кн- коэффициент неравномерности распределения вскрыши по годам, Kн=1.1÷1.3

Показатели по производительности карьера желательно свести в таблицу 1.4

Таблица 1.4 – Производственная мощность карьера (разреза)

Показатели	Добыча,т	Вскрыша, м ³
Годовая	Пгод	Пв
Месячная	Пгод:12	Пв:12
Суточная	Пгод:354	Пв:354
Сменная	Псут:2	Псут:2
Часовая	Псм:12	Псм:12

Таблица 1.5 – Нормативы и сроки освоения проектной производственно мощности карьеров (для железорудных карьеров)

Производственная	Период	Объем добычи % от производственной мощности		
мощность, млн.т	освоения, мес.	1 год	2 года	3 года
до 5	9	85	100	-
5÷15	15	71	99	100
15÷30	18	65	98	100
30	24	60	90	100

Производственная мощность карьера по вскрыше можно определить по формуле:

$$\Pi_B = \Pi_{\Gamma O \mathcal{I}} \cdot K_{CP} \cdot K_H, M^3 / 200$$
(1.27)

где Кн-коэффициент неравномерности распределения вскыши по годам разработки, $K_H=1,1\div1,3$.

Показатели производительности карьера свести в таблицу 1.5.

Таблица 1.5 –Производственная мощность разреза

Показатели	Добыча, т	Вскрыша, м ³
Годовая	Пгод	Пв
Месячная	Пгод:12	Пв:12
Суточная	Пгод:354	Пв:354
Сменная	Псут:2	Псут:2
Часовая	Псм:12	Псм:12